PLENARY LECTURES

The Tower of Hanoi — A Personal (Re)Wiew

ANDREAS M. HINZ

The past of the Tower of Hanoi can be divided into two parts. Prehistory
(phase O) ranged from -2300, when the legendary Fu Xi introduced the
binary system, to 1883, the year when the famous puzzle was brought out by
Edouard Lucas. History (phase I) then lasted until 1985, when an enervated
editor asked for “no more articles on this for a while”. The present (phase II),
i.e. the remaining time until this workshop, is marked by a serious and
thorough mathematical treatment of the subject, and the future (phase III)
will be occupied with a number of difficult problems left open after more
than four thousand years.

These four temporal phases can also be characterized by the topics they
were, are and will be dealing with. Phase O witnessed the emergence of
basic concepts like binary numbers, complete induction and the mathemat-
ical modelling of puzzles as graphs. Phase I was a period of occupation, in
such diverse areas as mathematics, computer science and psychology, with
the classical Tower of Hanoi problem posed by Lucas and its relations to
the Chinese rings, Gray codes and square-free sequences. Phase II can be
summarized as the, sometimes implicit, study of the qualitative and quan-
titative properties of the Hanoi graphs with the emergence of surprising
connections to fractals like the Sierpinski triangle, error-correcting codes,
finite automata and some classical number sequences. The questions left
open for phase III are mainly concerned with Hanoi graphs corresponding
to the Tower of Hanoi with more than three pegs. They involve distances
on these graphs, crossing numbers and genera. The approaches to these
problems are both analytical and experimental mathematics. Practical ap-
plications of these studies include sophisticated psychological test devices
and benchmark tasks for computing systems.

As long as the monks in Benares will not have finished their task, the
Tower of Hanoi and related problems will keep mathematicians busy as well.



The Tower of Hanoi for Humans

PauL K. STOCKMEYER

While the recursive presentation of the unique Tower of Hanoi solution
algorithm is very elegant and easy to analyze, it is not easily carried out by
humans. The priests who are transferring the 64 discs of pure gold day and
night, one move per second, are almost certainly not thinking recursively.
I will present three alternative presentations that allow both priests and
ordinary people to perform the moves automatically, with little thought.
All three were discovered a long time ago, all were rediscovered often, and
all are frequently attributed to the wrong person.

With these examples for guidance, I will then develop a definition for
“human” algorithm presentations and examine some of the consequences of
this definition. (Being iterative rather than recursive is necessary but not
sufficient for being a human algorithm presentation.)

In the last part of the talk T will examine possible human algorithm pre-
sentations for several popular variations of the original problem. These will
include restrictions, such as three-in-a-row and cyclic; generalizations, such
as converting a random regular configuration into a perfect configuration;
and the presumed minimal solution for the Reve’s puzzle.



SERIES OF 8 LECTURES

The Tower of Hanoi

ANDREAS M. HINZ

The aim of this series of lectures is to introduce into the Tower of Hanoi
and offsprings of its mathematical theory. It addresses beginners, but may
also attract experts by some not so well-known details.

We begin with the prehistory of the subject with such basic topics as the
natural numbers, induction, metric spaces and graphs. This introductory
chapter is inspired by the Chinese ring puzzle whose mathematical core is the
basis of the Tower of Hanoi task, which is described and solved in Chapter 1.
This solution is also associated with square-free sequences. For variants of
the problem, however, Hanoi graphs have to be introduced. Their quan-
titative properties will be discussed in Chapter 2. This includes distances
on these graphs and connections to the Sierpinski triangle and some further
classical integer sequences. The final chapter is then devoted to higher rank
Hanoi graphs which are connected to the Tower of Hanoi with more than
three pegs. We will recount here what is known and what is still desired.
There is also a discussion of numerical approaches to open questions.

The lecture series is accompanied by exercises and some computer ex-
periments.



CONTRIBUTED TALKS

On a Question of Leiss Regarding the Hanoi
Tower Problem

DANY AZRIEL , DANIEL BEREND

The Tower of Hanoi problem is generalized in such a way that the pegs
are located at the vertices of a directed graph G, and moves of disks may be
made only along edges of G. Leiss obtained a complete characterization of
graphs in which arbitrarily many disks can be moved from the source vertex
S to the destination vertex D. Here we consider graphs which do not satisfy
this characterization; therefore there is only a finite number of disks which
can be handled. Denote by g, the maximal such number as G varies over
all such graphs with n vertices and S, D vary over the vertices.

Answering a question of Leiss [1], we prove that g,, grows sub-ezponentially
fast. Moreover, there exists a constant C' such that g, < Cn2'°82" for each
n. On the other hand, for each ¢ > 0 there exists a constant C. > 0 such
that g, > C’En(%_g) log2m for each n.
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Hypercubes are Distance Graphs

MELITA GORSE PIHLER , JANEZ ZEROVNIK

The ¢-distance between G and G5 is
G17G2 Z |dGl Uu, U dG2(¢ua¢U)|a

where the sum is taken over all (72’) unordered pairs u, v of vertices of G.
Of course, if dy(G1,G2) = 0 then ¢ is an isomorphism and G = G, while
if Gi % Go, then dy(G1,G2) > 0 for every one-to-one mapping ¢. This
suggests defining the distance d(G1, G2) between G and G, by

d(Gl, GQ) = min{d¢(G1, GQ)},

where the minimum is taken over all one-to-one mappings ¢ from V(G1) to
V(G3). Thus, d(G1,G2) = 0 if and only if G; = G4. Hence d(G1,G2) can be
interpreted as a measure of the similarity of G1 and G5, because the smaller
the value of d(G1,G>), the more similar the structure of G is to that of G,.

Let S be a set of connected graphs having the same order. Then the
distance graph D(S) of S has vertex set S and two vertices G; and G4 of
D(S) are adjacent if and only if d(G1, G3) = 1. Further, we say that a graph
G is a distance graph if there exists a set S of graphs having fixed order
such that D(S) = G.

It has been recently conjectured [1] that: A graph G is a distance
graph if and only if G is bipartite and proved that: every distance graph
is bipartite, every even cycle is a distance graph, every tree is a distance
graph, the graph Ks,, is a distance graph for every positive integer n, etc.

Here we support the conjecture by proving that

Theorem: Every induced subgraph of a hypercube is a distance graph.

Reference
[1] G. Chartrand, G. Kubicki and M. Schultz, Graph similarity and distance
in graphs, Aequationes Math. 55 (1998), 129-145.
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On Tower Powers of Graphs

ROBERT E. JAMISON , CRAIG TURNER

This talk is based on the 1993 Doctoral Dissertation of my student Craig
Turner. Consider any graph G = (V, E) which will be called the peg struc-
ture. We do not wish to refer to rings as in the original Tower of Hanoi
problem but to a set .# of marks. The marks are partially ordered and
an assignment of the marks to the vertices of G is a position in the order
power of G by the .. 1t is not necessary to think of the marks as physical
objects. It is not necessary to think of them as being placed in some order
on a physical peg which the vertex represents. A position is simply a map
a: M — V. The set of marks assigned to a vertex v is the stack at that
vertex.

The positions are the vertices of the order power. Two positions a and
B are adjacent iff & can be obtained from 8 by moving a mark m from the
stack at some vertex v of G to an adjacent vertex w of G such that m is
minimal in both these stacks.

When the marks .# are totally ordered — that is, form an order theoretic
tower — then we call this a tower power of G. Notice that the weaker the
order of ., the more edges there are in the order power. The Tower Power
is most restrictive. And the case when . is an antichain is least restrictive
and gives the usual cartesian (box) product.

In his dissertsation, Craig Turner investigated, among other things, re-
lationships between properties of peg structures and Tower Powers. 1 will
survey some of these results here.
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Many Aspects of Sierpinski Graphs

SANDI KLAVZAR

Sierpiniski graphs S(n, k) were introduced in [1], where it is in particular
shown that the graph S(n,3), n > 1, is isomorphic to the graph of the
Tower of Hanoi with n disks. This family of graphs has many interesting
properties, and the way they are labeled offer many possible applications.
In this talk we will briefly survey some of such results. In particular we
will mention that (just a slightly modified) Sierpiniski graphs form the first
nontrivial family of graphs of “fractal” type whose crossing number is known
[2]. Moreover, Romik [3] used the Sierpiniski labeling and finite automata
for several insights into the shortest paths of the Tower of Hanoi graphs.

References

[1] S. Klavzar and U. Milutinovi¢, Graphs S(n,k) and a variant of the
Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997), 95
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Hanoi Variations

FrRED LUNNON

In addition to the obvious recursive method, the Classical Towers of
Hanoi problem possesses several direct solution algorithms: in particular,
one based on bi-colouring the discs, another based on directing the moves
between pins, and a third periodic in respect of the pins with period 3
moves. These solutions in turn suggest a pair of excellent three-pin varia-
tions: R. Neale’s Rainbow with colours increased from 2 to 3; and D. Knuth’s
Cyclic with direction limited cyclically to (say) clockwise.

The construction of an analogous colouring algorithm for the Cyclic
problem suggests the notion of discs whose colour flips as they move, which
in turn leads to a pair of intriguing new variations: Reversi, where the
colour of a disc always flips and (as for Classical) differs from that below;
and Domino, where it flips but matches below. With three pins, Reversi
is easily found to be insoluble; Domino on the other hand, resembling a
noticeably gnarlier version of Rainbow, can be (and more or less has been)
completely solved.

Undaunted, we press on to consider various solutions for four-pin Re-
versi, for which an optimal solution cannot currently even be plausibly con-
jectured. However, one special case in which the bases are also coloured
possesses a remarkable optimal periodic solution with period of 8 moves,
which proves in addition to be a (very inefficient) solution to another bi-
coloured four-pin variation: Checkers, where the colours do not flip, and
differ from below. Although not inherently very exciting, the latter puzzle
casts some light on the Reve’s puzzle (or classical four-pin): the Frame con-
jecture fails for Checkers. [It is not known whether an optimal solution for
Checkers is also an optimal solution for the Reve’s: 15 discs is our earliest
unresolved case.]

The discussion of these and related puzzles (according to time available)
will be enlivened by its author’s attempts to illustrate their solution with
the assistance or otherwise of an interactive computer program HanoiVar, a
Java application which has been designed to facilitate the presentation and
exploration of such variations.
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Stern’s Polynomials

SANDI KLAVZAR , UROS MILUTINOVIC , CIRIL PETR

Sierpinski graphs S(n, k) were introduced in [4], where it is shown that
the graph S(n,3), n > 1, is isomorphic to the graph of the Tower of Hanoi
with n disks. Here we generalize the results of [3] from the Tower of Hanoi
graphs to arbitrary S(n, k). Instead in terms of Stern’s diatomic sequence,
new results are given in terms of Stern’s (diatomic) polynomials. Connec-
tions with different numeration systems are obtained as well [1, 2].
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On Some Metric Properties of the Sierpinski
Graphs S(n, k)

DANIELE PARISSE

Sierpiniski graphs S(n,k), n,k € N, can be interpreted as graphs of a
variant of the Tower of Hanoi with £ > 3 pegs and n > 1 discs. In particu-
lar, it has been proved that for k¥ = 3 the graphs S(n, 3) are isomorphic to
the Hanoi graphs H3'. In this paper the chromatic number, the diameter,
the radius and the center of S(n,k) will be determined. Moreover, an im-
portant invariant and a number-theoretical characterization of S(n, k) will
be derived. By means of these results the complexity of Problem 1, that is
the complexity to get from an arbitrary vertex v € S(n,k) to the nearest
and to the most distant extreme vertex, will be given. For the Hanoi graphs
HZ some of these results are new.

[1] A. M. Hinz, The Tower of Hanoi, Enseign. Math. (2) 35 (1989) 289-321.
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of Hanoi problem, Czechoslovak Math. J. 47 (122) (1997) 95-104.

[3] D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis,
Miinchen, 1997.

Computational Experiments over Multi-peg Tower
of Hanoi

CIrRIL PETR

One of the most challenging open problems in multi-peg Tower of Hanoi
is proving the optimality of the algorithm which defines the sequence of
moves between two perfect states. Frame [1] and Stewart [5] were first to
propose such solutions and there are many equivalent approaches to these
solutions [3]. In [2] A. M. Hinz coined the term “presumed minimum solu-
tion” to describe proposed solutions.
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In all optimal sequences the largest disc is moved exactly on the half
of the sequence. The move of the largest disk is possible only if all other
disks are placed on the pegs not involved into this move. The presumed
minimum solutions are realized only by considering some special superdisc
states at the move of the largest disc. Which are the states not considered
by presumed minimum solutions, but are also on optimal paths?
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On the Generalized Tower of Hanoi Problem: An
Introduction to Clusters

ANDREY RUKHIN

I will present a novel approach to the Tower of Hanoi puzzle: we will
consider the concept of a cluster to help analyze the problem. It has been
proclaimed that the mathematical structure of the puzzle needs to be fully
established before one can make arguments concerning minimal paths with
the puzzle. I will present such a structure and, time permitting, I will present
some general results concerning minimality within this context.
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Identification of Diameter of Configuration Graphs

DANIEL BEREND , AMIR SAPIR

Versions of the classical Tower of Hanoi problem evolved in various direc-
tions, of which the addition of pegs and avoidance of direct moves between
some pairs of pegs are the framework in which we deal. In other words, the
pegs are the vertices of some directed graph, and an arc designates the per-
mission to move a disk between the corresponding pegs, along the direction
of that arc (henceforth variant graph).

Besides finding solutions to versions, the Tower of Hanoi is a rich source
for questions. In some of them, one is clearly led to guess a certain answer,
which turns out surprisingly to be incorrect [3]. One such instance is the
following;:

Question Find a pair of disk arrangements (henceforth configurations)
requiring the longest move sequence in order to get from one to the other.

Intuition directs us to believe that such configurations are perfect —
all disks are stacked on a single peg. Indeed, for Complete it has been long
known that the transition from one perfect configuration to another requires
more moves than are required for a transition between any two configura-
tions ([4], [8]). However, this is not the case for the general 4-peg problem.
Consider Complete, and 15 disks. As can be deduced from the expressions in
[5], a perfect task requires 129 moves, whereas Korf [6, 7] found non-perfect
configurations that require 130 moves to reach a perfect configuration.

Representing each configuration by a vertex, and the ability to move
from one configuration to the other in a single move by an arc, we form a
configuration graph. In graph-theoretic terms, we are interested in finding
its diameter D,,, and the vertices which yield it.

In this talk we identify the longest tasks for all the 3-peg versions and
for the Cyclicy versions, for h > 4 [2]. For the latter family of versions
this result is obtained despite that we cannot determine the exact complex-
ity of the tasks [1], and is of particular interest since, among all strongly
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connected digraphs on h vertices, Cyclicy is the ‘least connected’ (in the
sense that the in-degree and out-degree of each vertex is 1) and thus seems
a good candidate for being the graph requiring the largest number of moves
for transferring a tower of disks.

Let R;, be the perfect configuration with n disks on peg i, R;,, — R;,
— the perfect task from peg i to peg j, d;j, — the length (minimal number of
moves) of such a task, and put d,, = max; j d;;,. Obviously, for any variant
graph d,, < D,,. Specifically,

Theorem 1 For any variant graph on 3 vertices:
D, =d,, n > 1.

In the course of proving the theorem, we will identify the pairs of con-
figurations which require the largest number of moves, using a term as an
inezistent arc, and considering perfect tasks over inexistent arcs, which will
be explained in the talk.

Theorem 1 cannot be extended to 4-peg versions in general, as was men-
tioned earlier. However, our main result states that in the Cyclicy version
such an anomaly cannot occur. Moreover, we prove the transition between
the two farthest perfect configurations takes more steps than the transition
between any other pair of configurations.

Theorem 2 For all Cyclicy graphs where h > 3, and for n > 1:
Dn = dn = dij,n 3

where j = (i — 1) mod h.
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The Complexity of the Cyclic Versions

DANIEL BEREND , AMIR SAPIR

Adding pegs and imposing move restrictions between some pairs of pegs
are the source of many versions. A straight-forward representation of such a
version is by a digraph where a vertex stands for a peg, and an arc — for the
permission to move a disk between the corresponding pegs, along the direc-
tion of that arc (henceforth variant graph). The number of isomorphically
different graphs (and hence versions) grows considerably as the number of
vertices grows.

All 3-peg versions are H-exp — that is, require an exponentially fast
growing number of moves (as a function of the number of disks n) to trans-
fer a tower of n disks from one peg to another (cf. [4]). The Completey
requires (somewhat surprisingly) a sub-exponentially fast growing number
of moves (cf. [6]) — henceforth H-subezp. Most of the 83 strongly connected
digraphs with 4 vertices (that is, the versions on 4-pegs) are H-subexp, and
this percentage grows with the increase in the number of vertices h.

In [5], an upper bound of 3" — 1 was obtained for the complexity of
(moving a tower of n disks from peg 1 to peg 3 in) Cyclicy. It was observed
in [6] that this bound is not tight, but the question whether the complexity
is exponential as a function of the number of disks was left open. We shall
show that the complexity is indeed exponential, provide also upper bounds,
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and prove it behaves roughly as A" for some A > 1. We indicate how \;, may
be better estimated for any specific h using (heavy) computer calculations.

Let f > 0 and denote by b = b(h, f) the maximal length of all legal
sequences of moves (starting from any initial configuration) containing no
more then f moves of disk 1. Then

Theorem 3

N2

b—f

Let R; ,, be the perfect configuration with n disks on peg i, R1, — Riyjn
— the perfect task from peg 1 to peg j + 1 and a;, — the length (minimal
number of moves) of such a task. Due to symmetry, the length of a minimal
solution for moving a tower of disks from a source peg to a destination
depends only on the distance between these pegs. Since the diameter of the
configuration graph of Cyclicy, equals ap_;, ([2]), and the rate of growth
of ay, as a function of n is essentially the same for all 1 <k < h—1, we
shall focus only on a y, which, for brevity, will be denoted by a,. Setting
A = lim, o {/ay,, we prove that there is a constant C such that Al <
ap < C(A+¢)™.

Convergence to A can be accelerated by looking at sequences of solutions
where disk 1 makes a minimal number of moves, even at the expense of a
longer overall sequence. In the next theorem we utilize consecutive moves of
disk 1 (referring to j consecutive moves of disk 1 as a j-peg move) to achieve
better upper bounds for .

Theorem 4 Assume we have an algorithm for the transition Ri,, —
Ry11 for1 <k < h—1 and some fizred ng > 2. Denote by a(l)’g the number

no,

-~ h—1
of j-peg-moves of disk 1 while making this transition. Put M = (afllo)’,z)k v
’ J=

Let Ay, be the largest eigenvalue of M. Then:

Ah < "0 Ao -

Next we consider the behavior of A\, as a function of hA.
Theorem 5 Let h > 3. Then:
(a) M1 < g

(b) 1+ s2gy <My < (A —1)7-2.
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Summary The most important result is proving that Cyclicj is H-
exp. Further, it is obtained despite that we cannot determine the exact
complexity of the tasks [1], and is of particular interest since, among all
strongly connected digraphs on h vertices, Cyclicy is, in a sense, the ‘least
connected’. If this is so, an upper bound for the complexity of a Cyclicy
for any specific h can serve as an upper bound for any version with A vertices.
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Central Mean as a Threshold for Augmentation of
Decision-Making Committees

DANIEL BEREND , LUBA SAPIR

There is a variety of situations where a group of experts is required to
select one of two alternatives, of which exactly one is correct. The experts,
which may be humans or not (say, computers or algorithms), share a com-
mon preference — to identify the correct alternative. This model is known
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as the dichotomous choice model, and goes back as far as Condorcet (1785).
Its applications are relevant to a wide variety of areas.

Let n be the size of the group, and denote by p;, 1 <14 < n, the prob-
abilities of the experts to make the right choice. We assume that p; > 1/2
for 1 < i < n, and that the experts are independent in their choices. A
decision rule is a rule for translating the individual opinions into a group
decision. The number of all possible decision rules is 22°. The most well
known decision rule is the simple majority rule.

In the study of the dichotomous choice model, we focus on the simple
majority rule, used in Condorcet’s Jury Theorem. This theorem provides a
theoretical basis of public choice and political science theory, and has been
a subject of extensive study in recent decades. Condorcet’s Jury Theorem
states, roughly speaking, that a group utilizing the simple majority rule is
more likely to choose correctly as its size increases.

Is the augmentation of the group always an advantage? The answer
depends on the interpretation. For a fixed committee and random subcom-
mittees thereof, it is in general correct. However, this is not necessarily the
case for fixed subcommittees. We obtain a necessary and sufficient condition
for a small augmentation of the decision-making body to be beneficial. This
condition is based on a threshold, which turns out to be a certain symmetric
polynomial mean (henceforth central mean) of the competence levels of the
current committee members, i.e. 15’@, 1 <4 < n. An interesting feature of
our condition is that it splits the required information into two parts, one
depending only on the current group members and the other only on the
new candidates. We explore the condition from various points of view, such
as

e a time required for its verification,

e its connections with well-known means (arithmetic, geometric and har-
monic),

e its intuitive meaning.

In addition, we derive conditions enabling us to know that the augmented
committee is better (or worse) than the original one even though we know
only the competencies of some of the most (or least) qualified members of
the original committee.
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Optimality of an Algorithm Solving the k-Relaxed
Hanoi Towers Problem

YEFIM DINITZ , SHAY SOLOMON

We study the k-Relaxed Hanoi Towers Problem RHTj(n), which was
posed by D. Wood in 1981. It differs from the classic problem by a relaxed
placement rule: A bigger disk j may be placed above a smaller disk i if
their size difference is less than k. The shortest sequence of moves from the
standard state of disks [1..n] on peg A to that on peg C, using peg B, is in
question. If k is 1, we arrive at the classic problem.

Beneditkis, Berend, and Safro suggested, in 1998, the following sequence
of moves Ay (n), and for the case k = 2, proved its optimality for RHT},(n):

1. Move disks [1..(n — 1)] from A, by the minimum possible number of
moves, to any (legal) state on B.

2. Move disk n from A to C.

3. Move disks [1..(n—1)] from B to C, by the sequence of moves symmetric
to that at stage 1.

The shortest “somehow” move sequence of disks [1..7], from the standard
state on peg X to any legal state on peg Y, using peg Z, Bx(r), is obvious
when r < k: mowe all disks from X to Y one by one. For the general r, the
sequence [ (r) was defined, by Beneditkis, Berend, and Safro, recursively:

e Perform fy(r — k), from X to Z.
e Move disks [(r — k + 1)..r], one by one, from X to Y.
e Perform fy(r — k), from Z to Y.

We prove optimality of Ay(n) for RHT},(n), for the general k.
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